I I JOURNAL OF
OBJECT TECHNOLOGY

Journal of Object Technology | MANUAL

Countering Anti-Debugging Techniques: Enhancing
Transparency in Nested Virtualization using HyperDbg

(Tool Demonstration)

Anonymous Authors
Anonymous Affiliation

ABSTRACT Modern malware increasingly employs sophisticated anti-debugging and anti-virtualization techniques to evade
analysis, particularly targeting artifacts left by virtualization and nested virtualization environments such as VMware Workstation,
Hyper-V, and KVM. HyperDbg, an open-source hypervisor-level debugger, introduces advanced mechanisms to mitigate both
its own hypervisor footprints and those of the underlying nested virtualization stack. In this talk, we demonstrate the capabilities
of adding a transparency layer on top of the HyperDbg debugger to detect, mitigate, and bypass common and advanced
anti-debugging methods leveraged against such environments. Although achieving complete transparency remains infeasible,
it significantly raises the bar for malware attempting to detect analysis environments, making evasion substantially more
difficult. We further highlight the critical importance of these techniques in practical malware analysis workflows, particularly
in scenarios involving snapshot restoration for analyzing and debugging internal malware behavior. By reducing observable
artifacts, HyperDbg enhances the reliability of snapshot-based analysis and debugging, allowing researchers to stealthily
investigate and understand the inner workings of evasive malware without premature detection or execution of anti-analysis

payloads.

KEYWORDS Anti-Debugging, Anti-Virtualization, Nested Virtualization, Debugging Malware, Binary Analysis.

Extended Abstract

Dynamic malware analysis and debugging are critical steps in
understanding the behavior of sophisticated threats. Unlike
static analysis, which can be hindered by heavy obfuscation,
packing, or encryption, dynamic analysis enables researchers to
observe real-time execution, track control flow, and extract hid-
den payloads. While static analysis tools like IDA Pro, Ghidra,
Binary Ninja, and Radare are invaluable for reverse engineer-
ing, they become significantly less effective when dealing with
packed or heavily obfuscated malware. In such cases, a debug-
ger becomes the primary tool for malware analysts to unpack,

JOT reference format:

Anonymous Authors. Countering Anti-Debugging Techniques: Enhancing
Transparency in Nested Virtualization using HyperDbg (Tool Demonstration).
Journal of Object Technology. Vol. vv, No. nn, yyyy. Licensed under
Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

deobfuscate, or automate the analysis of the malware’s behavior.

Since regular user-mode or kernel-mode debuggers can leave
detectable artifacts, hypervisor-based debuggers are often pre-
ferred for stealthier analysis. Hypervisor-level debuggers not
only minimize their footprint but also provide system-level ac-
cess, allowing observation of behaviors that occur even above
the operating system kernel by employing hypervisor-level ca-
pabilities.

Hypervisor-based debuggers, among their benefits, come
with certain artifacts that expose the presence of the hypervisor.
This problem becomes even more serious in nested virtualiza-
tion environments, where clues left by both the main hypervisor
and the nested one can be used by malware to detect that it is
being watched. Small differences in CPU behavior, hardware
details, timing measurements, or system information can reveal
that the malware is running inside a debugger or a virtual ma-
chine. Once detected, malware might shut itself down early or
trigger fake behavior to mislead the analyst.

An AITO publication


http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

To address these issues, we present a transparency layer
over the HyperDbg (Karvandi et al. 2022) debugger specifically
designed to enhance transparency in nested virtualization envi-
ronments. By not using OS-level debugging APIs, HyperDbg
minimizes detectable artifacts at multiple layers, enabling ana-
lysts to conduct stealthy, fine-grained debugging sessions even
against highly evasive malware. By mitigating both traditional
anti-debugging techniques and emerging nested virtualization
detection methods, HyperDbg significantly improves the relia-
bility and effectiveness of dynamic malware analysis workflows.

VM Detection Techniques and Mitigations: Malware can
detect virtualized environments using a broad range of heuristics.
The transparency layer offers or facilitates mitigations against
multiple categories of these techniques:

CPU and Hypervisor Detection: Many detection meth-
ods query CPU features to find virtualization artifacts. These
include checking the hypervisor vendor ID (via CPUID instruc-
tions), looking for anomalies in CPU brand strings, hypervisor
flags, and reserved CPUID leaves. Specific signatures associ-
ated with platforms like KVM or Intel’s KGT branch can also
be probed. Mitigations typically involve masking or spoofing
CPUID (using nested VM-exits) to hide hypervisor presence.

Timing Analysis: Virtual machines often introduce timing
inconsistencies due to emulation overheads or event handling
delays. Malware may measure execution timings to infer vir-
tualization. The timing resources include TSC (Time Stamp
Counter) or system-wide resources like external devices, HPET
(High Precision Event Timer), Performance Counters, APIC
(Advanced Programmable Interrupt Controller) Timers, Win-
dows APIs, or timing thread approaches (Schwarz et al. 2017).

Mitigations involve introducing random jitter or normaliz-
ing timing outputs to appear more like bare-metal systems by
employing VM-exits for TSC (RDTSC/RDTSCP), PMC (RDPMC),
Different MSR registers using MSR Bitmap, monitoring for
system-calls querying timers, virtualizing APIC, or monitoring
for PIO/MMIO ranges of external devices. Timing-based de-
tection methods are less common in modern malware, because
Windows 11 enforces Virtualization-Based Security (VBS) by
default. As a result, malware must assume it is running inside a
hypervisor to avoid triggering false positives.

Windows-Specific Detection: Malware may search for VM
indicators specific to Windows environments, such as MSSMBI0S
registry keys, loaded DLLs, known registry values, or system
mutexes.

Mitigations involve monitoring system-calls that query the
information related to VM and spoofing registry/file entries.

CPU and Hardware Analysis: By examining hardware
characteristics, malware can identify virtualized environments.
Checks include inspecting processor and core counts, tempera-
ture sensors, VHD boot status, thread numbers, driver names,
and hypervisor memory pools.

Mitigations involve adjusting VM configurations to emulate
realistic hardware profiles.

Network Analysis: VM network adapters often use MAC
addresses tied to virtualization vendors. Malware can detect
these known prefixes or look for VirtualBox network drivers.
Mitigations include randomizing MAC addresses and renaming

2 Anonymized et al.

network drivers.

Hardware Information: VMs may have default or invalid
chassis, device, and firmware information, such as missing
thermal sensors, suspicious PCI bridge names, or generic BIOS
details. Malware can also scan GPU capabilities and strings to
detect virtualization. Mitigations include modifying DMI tables,
spoofing firmware signatures, and emulating realistic hardware
characteristics (e.g., intercepting I/O ports querying PCle to
spoof vendor ID).

Instruction Set Analysis: Certain CPU instructions, such
as SIDT, SGDT, SLDT, or querying system registers can be-
have differently in virtual environments. Malware can use these
differences to detect VMs. Some techniques rely on specific
features, such as VMware I/O port backdoor. Mitigations in-
volve emulating native CPU instruction behavior and hiding
special I/O ports by intercepting VM-exits related to IN and
0UT instructions.

Filesystem and Storage Analysis: Malware may search
for files, drivers, or directories unique to VM platforms like
QEMU, KVM, or VirtualBox. Moreover, VMs often use default
or small-sized disks. Malware can check disk sizes, disk serial
numbers, or memory allocation patterns.

Mitigations requires intercepting system-calls and spoofing
filesystem traces.

Process Analysis: Running processes related to VM ser-
vices, such as VMware Tools or QEMU guests, can reveal a
virtualized environment. Mitigations involve masking or termi-
nating these processes (e.g., through system-call monitoring).

Specialized Techniques: More advanced checks include
analyzing CPU thread counts (e.g., detecting odd thread num-
bers), probing memory regions for VM signatures, or exploiting
low-level system features like the OSXSAVE instruction. Miti-
gations require deep modifications to the hypervisor, and CPU
emulation layers to mimic bare-metal behavior accurately.

Our work on top of HyperDbg demonstrates that substan-
tial increases in transparency are achievable even in complex
nested virtualization environments. Although perfect invisibil-
ity remains unattainable due to the fundamental limitations of
software-based virtualization, HyperDbg significantly raises
the bar for malware attempting to evade analysis. Its modular
and open-source design enables continuous improvement and
adaptation to emerging anti-virtualization techniques, making
it a valuable tool for security researchers engaged in stealthy
malware analysis, debugging, and reverse engineering.

References

Karvandi, M. S., Gholamrezaei, M., Khalaj Monfared, S., Megh-
dadizanjani, S., Abbassi, B., Amini, A., ... Schwarz, M.
(2022). Hyperdbg: Reinventing hardware-assisted debug-
ging. In Proceedings of the 2022 acm sigsac conference on
computer and communications security (pp. 1709-1723).

Schwarz, M., Weiser, S., Gruss, D., Maurice, C., & Mangard, S.
(2017). Malware guard extension: Using sgx to conceal cache
attacks. In Detection of intrusions and malware, and vulnera-
bility assessment: 14th international conference, dimva 2017,
bonn, germany, july 6-7, 2017, proceedings 14 (pp. 3-24).



